-
Compare PHP and Python for scraping categories from The Warehouse New Zealand
How does scraping product categories from The Warehouse, a leading retailer in New Zealand, differ between PHP and Python? Does PHP’s DOMDocument provide a more straightforward approach for parsing static HTML, or is Python’s BeautifulSoup more efficient for handling diverse content structures? How do both languages handle large-scale scraping tasks, such as extracting multiple categories and their respective URLs?
Below are two implementations—one in PHP and one in Python—for scraping product categories, including their names and links, from The Warehouse’s website. Which is better suited for this task?PHP Implementation:<?php require 'vendor/autoload.php'; use GuzzleHttp\Client; // Initialize Guzzle client $client = new Client(); $response = $client->get('https://www.thewarehouse.co.nz/c/product-page'); $html = $response->getBody()->getContents(); // Load HTML into DOMDocument $dom = new DOMDocument; libxml_use_internal_errors(true); $dom->loadHTML($html); libxml_clear_errors(); // Initialize XPath $xpath = new DOMXPath($dom); // Scrape product categories $categories = $xpath->query('//div[@class="category-item"]'); foreach ($categories as $category) { $name = $xpath->query('.//span[@class="category-name"]', $category)->item(0)->nodeValue ?? 'No name'; $link = $xpath->query('.//a[@class="category-link"]', $category)->item(0)->getAttribute('href') ?? 'No link'; echo "Category Name: $name\nLink: $link\n"; } ?>
Python Implementation:
import requests from bs4 import BeautifulSoup # URL of The Warehouse category page url = "https://www.thewarehouse.co.nz/c/product-page" # Headers to mimic a browser request headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36" } # Fetch the page content response = requests.get(url, headers=headers) if response.status_code == 200: soup = BeautifulSoup(response.content, "html.parser") # Extract product categories categories = soup.find_all("div", class_="category-item") for category in categories: name = category.find("span", class_="category-name").text.strip() if category.find("span", class_="category-name") else "No name" link = category.find("a", class_="category-link")["href"] if category.find("a", class_="category-link") else "No link" print(f"Category Name: {name}\nLink: {link}\n") else: print(f"Failed to fetch the page. Status code: {response.status_code}")
Log in to reply.